Rising usage of deep neural networks to perform decision making in critical applications like medical diagnosis and financial analysis have raised concerns regarding their reliability and trustworthiness. As automated systems become more mainstream, it is important their decisions be transparent, reliable and understandable by humans for better trust and confidence. To this effect, concept-based models such as Concept Bottleneck Models (CBMs) and Self-Explaining Neural Networks (SENN) have been proposed which constrain the latent space of a model to represent high level concepts easily understood by domain experts in the field. Although concept-based models promise a good approach to both increasing explainability and reliability, it is yet to be shown if they demonstrate robustness and output consistent concepts under systematic perturbations to their inputs. To better understand performance of concept-based models on curated malicious samples, in this paper, we aim to study their robustness to adversarial perturbations, which are also known as the imperceptible changes to the input data that are crafted by an attacker to fool a well-learned concept-based model. Specifically, we first propose and analyze different malicious attacks to evaluate the security vulnerability of concept based models. Subsequently, we propose a potential general adversarial training-based defense mechanism to increase robustness of these systems to the proposed malicious attacks. Extensive experiments on one synthetic and two real-world datasets demonstrate the effectiveness of the proposed attacks and the defense approach.
translated by 谷歌翻译
我们引入了基于高斯工艺回归和边缘化图内核(GPR-MGK)的探索性主动学习(AL)算法,以最低成本探索化学空间。使用高通量分子动力学模拟生成数据和图神经网络(GNN)以预测,我们为热力学性质预测构建了一个主动学习分子模拟框架。在特定的靶向251,728个烷烃分子中,由4至19个碳原子及其液体物理特性组成:密度,热能和汽化焓,我们使用AL算法选择最有用的分子来代表化学空间。计算和实验测试集的验证表明,只有313个(占总数的0.124 \%)分子足以训练用于计算测试集的$ \ rm r^2> 0.99 $的精确GNN模型和$ \ rm rm r^2>>实验测试集0.94 $。我们重点介绍了提出的AL算法的两个优点:与高通量数据生成和可靠的不确定性量化的兼容性。
translated by 谷歌翻译
Causal chain reasoning (CCR) is an essential ability for many decision-making AI systems, which requires the model to build reliable causal chains by connecting causal pairs. However, CCR suffers from two main transitive problems: threshold effect and scene drift. In other words, the causal pairs to be spliced may have a conflicting threshold boundary or scenario. To address these issues, we propose a novel Reliable Causal chain reasoning framework~(ReCo), which introduces exogenous variables to represent the threshold and scene factors of each causal pair within the causal chain, and estimates the threshold and scene contradictions across exogenous variables via structural causal recurrent neural networks~(SRNN). Experiments show that ReCo outperforms a series of strong baselines on both Chinese and English CCR datasets. Moreover, by injecting reliable causal chain knowledge distilled by ReCo, BERT can achieve better performances on four downstream causal-related tasks than BERT models enhanced by other kinds of knowledge.
translated by 谷歌翻译
Distantly-Supervised Named Entity Recognition (DS-NER) effectively alleviates the data scarcity problem in NER by automatically generating training samples. Unfortunately, the distant supervision may induce noisy labels, thus undermining the robustness of the learned models and restricting the practical application. To relieve this problem, recent works adopt self-training teacher-student frameworks to gradually refine the training labels and improve the generalization ability of NER models. However, we argue that the performance of the current self-training frameworks for DS-NER is severely underestimated by their plain designs, including both inadequate student learning and coarse-grained teacher updating. Therefore, in this paper, we make the first attempt to alleviate these issues by proposing: (1) adaptive teacher learning comprised of joint training of two teacher-student networks and considering both consistent and inconsistent predictions between two teachers, thus promoting comprehensive student learning. (2) fine-grained student ensemble that updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise. To verify the effectiveness of our proposed method, we conduct experiments on four DS-NER datasets. The experimental results demonstrate that our method significantly surpasses previous SOTA methods.
translated by 谷歌翻译
Physics-Informed Neural Networks (PINNs) have recently been proposed to solve scientific and engineering problems, where physical laws are introduced into neural networks as prior knowledge. With the embedded physical laws, PINNs enable the estimation of critical parameters, which are unobservable via physical tools, through observable variables. For example, Power Electronic Converters (PECs) are essential building blocks for the green energy transition. PINNs have been applied to estimate the capacitance, which is unobservable during PEC operations, using current and voltage, which can be observed easily during operations. The estimated capacitance facilitates self-diagnostics of PECs. Existing PINNs are often manually designed, which is time-consuming and may lead to suboptimal performance due to a large number of design choices for neural network architectures and hyperparameters. In addition, PINNs are often deployed on different physical devices, e.g., PECs, with limited and varying resources. Therefore, it requires designing different PINN models under different resource constraints, making it an even more challenging task for manual design. To contend with the challenges, we propose Automated Physics-Informed Neural Networks (AutoPINN), a framework that enables the automated design of PINNs by combining AutoML and PINNs. Specifically, we first tailor a search space that allows finding high-accuracy PINNs for PEC internal parameter estimation. We then propose a resource-aware search strategy to explore the search space to find the best PINN model under different resource constraints. We experimentally demonstrate that AutoPINN is able to find more accurate PINN models than human-designed, state-of-the-art PINN models using fewer resources.
translated by 谷歌翻译
Visual localization plays an important role for intelligent robots and autonomous driving, especially when the accuracy of GNSS is unreliable. Recently, camera localization in LiDAR maps has attracted more and more attention for its low cost and potential robustness to illumination and weather changes. However, the commonly used pinhole camera has a narrow Field-of-View, thus leading to limited information compared with the omni-directional LiDAR data. To overcome this limitation, we focus on correlating the information of 360 equirectangular images to point clouds, proposing an end-to-end learnable network to conduct cross-modal visual localization by establishing similarity in high-dimensional feature space. Inspired by the attention mechanism, we optimize the network to capture the salient feature for comparing images and point clouds. We construct several sequences containing 360 equirectangular images and corresponding point clouds based on the KITTI-360 dataset and conduct extensive experiments. The results demonstrate the effectiveness of our approach.
translated by 谷歌翻译
从搜索效率中受益,可区分的神经体系结构搜索(NAS)已发展为自动设计竞争性深神经网络(DNNS)的最主要替代品。我们注意到,必须在现实世界中严格的性能限制下执行DNN,例如,自动驾驶汽车的运行时间延迟。但是,要获得符合给定性能限制的体系结构,先前的硬件可区分的NAS方法必须重复多次搜索运行,以通过反复试验和错误手动调整超参数,因此总设计成本会成比例地增加。为了解决这个问题,我们引入了一个轻巧的硬件可区分的NAS框架,称为lightnas,努力找到所需的架构,通过一次性搜索来满足各种性能约束(即,\ \ suesperline {\ textIt {您只搜索一次}})) 。进行了广泛的实验,以显示LINDNA的优越性,而不是先前的最新方法。
translated by 谷歌翻译
检测小物体是阻碍对象检测开发的主要障碍之一。通用对象检测器的性能在微小的对象检测任务上往往会大大恶化。在本文中,我们指出的是,基于锚的检测器中的先验盒或无锚检测器中的点是微小对象的优化。我们的主要观察结果是,当前基于锚的或无锚的标签分配范例将引起许多离群的微小地面真实样本,从而导致检测器对小物体的关注较少。为此,我们提出了一个基于高斯接受场的标签分配(RFLA)策略,以进行微小的对象检测。具体而言,RFLA首先利用了特征接受场遵循高斯分布的先前信息。然后,提出了一个新的接受场距离(RFD),而不是通过IOU或中心采样策略分配样品,以直接测量高斯接受场和地面真相之间的相似性。考虑到基于阈值的和中心的采样策略偏向大物体,我们进一步设计了基于RFD的层次标签分配(HLA)模块,以实现微小对象的平衡学习。四个数据集上的广泛实验证明了所提出的方法的有效性。尤其是,我们的方法在AI-TOD数据集上以4.0 AP点优于最先进的竞争对手。代码可从https://github.com/chasel-tsui/mmdet-rfla获得
translated by 谷歌翻译
航空图像中的微小对象检测(TOD)是具有挑战性的,因为一个小物体只包含几个像素。最先进的对象探测器由于缺乏判别特征的监督而无法为微小对象提供令人满意的结果。我们的主要观察结果是,联合度量(IOU)及其扩展的相交对微小物体的位置偏差非常敏感,这在基于锚固的探测器中使用时会大大恶化标签分配的质量。为了解决这个问题,我们提出了一种新的评估度量标准,称为标准化的Wasserstein距离(NWD)和一个新的基于排名的分配(RKA)策略,以进行微小对象检测。提出的NWD-RKA策略可以轻松地嵌入到各种基于锚的探测器中,以取代标准的基于阈值的检测器,从而大大改善了标签分配并为网络培训提供了足够的监督信息。在四个数据集中测试,NWD-RKA可以始终如一地提高微小的对象检测性能。此外,在空中图像(AI-TOD)数据集中观察到显着的嘈杂标签,我们有动力将其重新标记并释放AI-TOD-V2及其相应的基准。在AI-TOD-V2中,丢失的注释和位置错误问题得到了大大减轻,从而促进了更可靠的培训和验证过程。将NWD-RKA嵌入探测器中,检测性能比AI-TOD-V2上的最先进竞争对手提高了4.3个AP点。数据集,代码和更多可视化可在以下网址提供:https://chasel-tsui.g​​ithub.io/ai/ai-tod-v2/
translated by 谷歌翻译
近几十年来,Camera-IMU(惯性测量单元)传感器融合已经过度研究。已经提出了具有自校准的运动估计的许多可观察性分析和融合方案。然而,它一直不确定是否在一般运动下观察到相机和IMU内在参数。为了回答这个问题,我们首先证明,对于全球快门Camera-IMU系统,所有内在和外在参数都可以观察到未知的地标。鉴于此,滚动快门(RS)相机的时间偏移和读出时间也证明是可观察到的。接下来,为了验证该分析并解决静止期间结构无轨滤波器的漂移问题,我们开发了一种基于关键帧的滑动窗滤波器(KSWF),用于测量和自校准,它适用于单眼RS摄像机或立体声RS摄像机。虽然关键帧概念广泛用于基于视觉的传感器融合,但对于我们的知识,KSWF是支持自我校准的首先。我们的模拟和实际数据测试验证了,可以使用不同运动的机会主义地标的观察来完全校准相机-IMU系统。实际数据测试确认了先前的典故,即保持状态矢量的地标可以弥补静止漂移,并显示基于关键帧的方案是替代治疗方法。
translated by 谷歌翻译